Perturbation theory for rectangular matrix pencils

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perturbation Theory for Rectangular Matrix Pencils Perturbation Theory for Rectangular Matrix Pencils

abstract The theory of eigenvalues and eigenvectors of rectangular matrix pencils is complicated by the fact that arbitrarily small perturbations of the pencil can cause them disappear. However, there are applications in which the properties of the pencil ensure the existence of eigen-values and eigenvectors. In this paper it is shown how to develop a perturbation theory for such pencils. ABSTR...

متن کامل

An Arithmetic for Rectangular Matrix Pencils

This presentation is a generalization of 8] from square, regular n-by-n, pencils to singular and rectangular m-by-n pencils. We deene arithmetic-like operations on matrix pencils that are a natural extension of sums, products and quotients of real numbers. The algebra of linear transformations may be regarded as a special case of this pencil arithmetic. The language of linear relations leads to...

متن کامل

First order spectral perturbation theory of square singular matrix pencils

Let H(λ) = A0 + λA1 be a square singular matrix pencil, and let λ0 ∈ C be an eventually multiple eigenvalue of H(λ). It is known that arbitrarily small perturbations of H(λ) can move the eigenvalues of H(λ) anywhere in the complex plane, i.e., the eigenvalues are discontinuous functions of the entries of A0 and A1. Therefore, it is not possible to develop an eigenvalue perturbation theory for a...

متن کامل

Linear Perturbation Theory for Structured Matrix Pencils Arising in Control Theory

We investigate the effect of linear perturbations on several structured matrix pencils arising in control theory. These include skew-symmetric/symmetric pencils arising in the computation of optimal H∞ control and linear quadratic control for continuous and discrete time systems. 1. Introduction. In this paper we study the effects of linear perturbations on the spectra of structured matrix penc...

متن کامل

Perturbation of Eigenvalues of Matrix Pencils and Optimal Assignment Problem

We consider a matrix pencil whose coefficients depend on a positive parameter ǫ, and have asymptotic equivalents of the form aǫ when ǫ goes to zero, where the leading coefficient a is complex, and the leading exponent A is real. We show that the asymptotic equivalent of every eigenvalue of the pencil can be determined generically from the asymptotic equivalents of the coefficients of the pencil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1994

ISSN: 0024-3795

DOI: 10.1016/0024-3795(94)90445-6